Bauer, P.; Thorpe, A.; Brunet, G. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525 (7567), 47–55. https://doi.org/10.1038/nature14956.
Buchard, V.; Randles, C. A.; Silva, A. M. da et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. Journal of Climate 2017, 30 (17), 6851–6872. https://doi. org/10.1175/JCLI-D-16-0613.1.
Chakraborty, S.; Guan, B.; Waliser, D. E. et al. Extending the Atmospheric River Concept to Aerosols: Climate and Air Quality Impacts. Geophysical Research Letters 2021, 48 (9), e2020GL091827. https://doi. org/10.1029/2020GL091827.
Chang, K.-L.; Cooper, O. R.; West, J. J. et al. A New Method (M3Fusion v1) for Combining Observations and Multiple Model Output for an Improved Estimate of the Global Surface Ozone Distribution. Geoscientific Model Development 2019, 12 (3), 955–978. https://doi.org/10.5194/ gmd-12-955-2019.
Ciavarella, A.; Cotterill, D.; Stott, P. et al. Prolonged Siberian Heat of 2020 Almost Impossible without Human Influence. Climatic Change 2021, 166 (1), 9. https://doi.org/10.1007/s10584-021-03052-w.
Clark, H.; Bennouna, Y.; Tsivlidou, M. et al. The Effects of the COVID-19 Lockdowns on the Composition of the Troposphere as Seen by IAGOS. Atmospheric Chemistry and Physics Discussions 2021, 1–33. https://doi.org/10.5194/acp-2021-479.
Collaud Coen, M.; Andrews, E.; Alastuey, A. et al. Multidecadal Trend Analysis of in Situ Aerosol Radiative Properties around the World. Atmospheric Chemistry and Physics 2020, 20 (14), 8867–8908. https://doi.org/10.5194/ acp-20-8867-2020.
Cooper, O. R.; Schultz, M. G.; Schröder, S. et al. Multi-Decadal Surface Ozone Trends at Globally Distributed Remote Locations. Elementa: Science of the Anthropocene 2020, 8 (23). https://doi. org/10.1525/elementa.420.
Cristofanelli, P.; Arduni, J.; Serva, F. et al. Negative Ozone Anomalies at a High Mountain Site in Northern Italy during 2020: A Possible Role of COVID-19 Lockdowns? Environ. Res. Lett. 2021, 16 (7), 074029. https://doi.org/10.1088/1748-9326/ ac0b6a.
DeLang, M. N.; Becker, J. S.; Chang, K.-L. et al. Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environ. Sci. Technol. 2021, 55 (8), 4389–4398. https://doi.org/10.1021/acs.est.0c07742.
Fasullo, J. T.; Rosenbloom, N.; Buchholz, R. R. et al. Coupled Climate Responses to Recent Australian Wildfire and COVID-19 Emissions Anomalies Estimated in CESM2. Geophysical Research Letters 2021, 48 (15), e2021GL093841. https://doi. org/10.1029/2021GL093841.
Fiore, A. M.; Naik, V.; Spracklen, D. V. et al. Global Air Quality and Climate. Chem. Soc. Rev. 2012, 41 (19), 6663–6683. https://doi.org/10.1039/C2CS35095E.
Gelaro, R.; McCarty, W.; Suárez, M. J. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate 2017, 30 (14), 5419–5454. https://doi. org/10.1175/JCLI-D-16-0758.1.
Gkatzelis, G. I.; Gilman, J. B.; Brown, S. S. et al. The Global Impacts of COVID-19 Lockdowns on Urban Air Pollution: A Critical Review and Recommendations. Elementa: Science of the Anthropocene 2021, 9 (1). https://doi.org/10.1525/ elementa.2021.00176.
Gliß, J.; Mortier, A.; Schulz, M. et al. AeroCom Phase III Multi-Model Evaluation of the Aerosol Life Cycle and Optical Properties Using Ground- and Space-Based Remote Sensing as Well as Surface in Situ Observations. Atmospheric Chemistry and Physics 2021, 21 (1), 87–128. https://doi.org/10.5194/ acp-21-87-2021.
Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M. et al. Chapter 2. Observations: Atmosphere and Surface. In:Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F. et al., (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, 2013. https://www. ipcc.ch/site/assets/uploads/2017/09/WG1AR5_ Chapter02_FINAL.pdf.
Health Effects Institute. State of Global Air 2020. Special Report. 2020. Boston, MA: Health Effects Institute. https://www.stateofglobalair.org/sites/ default/files/documents/2020-10/soga-2020- report-10-26_0.pdf.
Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J. et al. The CAMS Reanalysis of Atmospheric Composition. Atmospheric Chemistry and Physics 2019, 19 (6), 3515–3556. https://doi.org/10.5194/ acp-19-3515-2019.
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. (Masson-Delmotte, V. et al., Eds.). https://www.ipcc.ch/report/ sixth-assessment-report-working-group-i/.
Kaiser, J. W.; Heil, A.; Andreae, M. O. et al. Biomass Burning Emissions Estimated with a Global Fire Assimilation System Based on Observed Fire Radiative Power. Biogeosciences 2012, 9 (1), 527–554. https://doi.org/10.5194/bg-9-527-2012.
Keller, C. A.; Knowland, K. E.; Duncan, B. N. et al. Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0. Journal of Advances in Modeling Earth Systems 2021, 13 (4), e2020MS002413. https://doi. org/10.1029/2020MS002413.
Laj, P.; Bigi, A.; Rose, C. et al. A Global Analysis of Climate-Relevant Aerosol Properties Retrieved from the Network of Global Atmosphere Watch (GAW) near-Surface Observatories. Atmospheric Measurement Techniques 2020, 13 (8), 4353–4392. https://doi.org/10.5194/amt-13-4353-2020.
Micke, K. Every Pixel of GOES-17 Imagery at Your Fingertips. Bulletin of the American Meteorological Society 2018, 99 (11), 2217–2219. https://doi. org/10.1175/BAMS-D-17-0272.1.
Molod, A.; Takacs, L.; Suarez, M. et al. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2. Geoscientific Model Development 2015, 8 (5), 1339–1356. https://doi.org/10.5194/ gmd-8-1339-2015.
Mortier, A.; Gliß, J.; Schulz, M. et al. Evaluation of Climate Model Aerosol Trends with GroundBased Observations over the Last 2 Decades – an AeroCom and CMIP6 Analysis. Atmospheric Chemistry and Physics 2020, 20 (21), 13355–13378. https://doi.org/10.5194/acp-20-13355-2020.
Murray, C. J. L.; Aravkin, A. Y.; Zheng, P. et al. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet 2020, 396 (10258), 1223–1249. https://doi. org/10.1016/S0140-6736(20)30752-2.
Pye, H. O. T.; Liao, H.; Wu, S. et al. Effect of Changes in Climate and Emissions on Future SulfateNitrate-Ammonium Aerosol Levels in the United States. Journal of Geophysical Research: Atmospheres 2009, 114 (D1). https://doi. org/10.1029/2008JD010701.
Randles, C. A.; Silva, A. M. da; Buchard, V. et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. Journal of Climate 2017, 30 (17), 6823– 6850. https://doi.org/10.1175/JCLI-D-16-0609.1.
Schultz, M. G.; Akimoto, H.; Bottenheim, J. et al. The Global Atmosphere Watch Reactive Gases Measurement Network. Elementa: Science of the Anthropocene 2015, 3 (000067). https://doi. org/10.12952/journal.elementa.000067.
Schultz, M. G.; Schröder, S.; Lyapina, O. et al. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations. Elementa: Science of the Anthropocene 2017, 5 (58). https://doi.org/10.1525/ elementa.244.
Sokhi, R. S.; Singh, V.; Querol, X. et al. A Global Observational Analysis to Understand Changes in Air Quality during Exceptionally Low Anthropogenic Emission Conditions. Environment International 2021, 157, 106818. https://doi. org/10.1016/j.envint.2021.106818.
Steinbrecht, W.; Kubistin, D.; Plass-Dülmer, C. et al. COVID-19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophysical Research Letters 2021, 48 (5), e2020GL091987. https://doi.org/10.1029/2020GL091987.
Stieb, D. M.; Burnett, R. T.; Smith-Doiron, M. et al. A New Multipollutant, No-Threshold Air Quality Health Index Based on Short-Term Associations Observed in Daily Time-Series Analyses. Journal of the Air & Waste Management Association 2008, 58 (3), 435–450. https://doi. org/10.3155/1047-3289.58.3.435.
Tarasick, D.; Galbally, I. E.; Cooper, O. R. et al. Tropospheric Ozone Assessment Report: Tropospheric Ozone from 1877 to 2016, Observed Levels, Trends and Uncertainties. Elementa: Science of the Anthropocene 2019, 7 (39). https:// doi.org/10.1525/elementa.376.
van Donkelaar, A.; Martin, R. V.; Brauer, M. et al. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50 (7), 3762–3772. https://doi.org/10.1021/acs.est.5b05833.
Wagner, C. E. V. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry technical report; Canada Communication Group Publ: Ottawa, 1987.
West, J. J.; Smith, S. J.; Silva, R. A. et al. Co-Benefits of Mitigating Global Greenhouse Gas Emissions for Future Air Quality and Human Health. Nature Clim Change 2013, 3 (10), 885–889. https://doi. org/10.1038/nclimate2009.
World Meteorological Organization (WMO), WMO Aerosol Bulletin. No. 4, 2021. https://library.wmo. int/index.php?lvl=notice_display&id=21886#. YS421tMzZGw.
World Meteorological Organization (WMO), WMO Airborne Dust Bulletin. No. 5, 2021. https://library. wmo.int/index.php?lvl=notice_display&id=19826#. YS42btMzZGw.
WMO/GAW. The Global Atmosphere Watch Programme: 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses. WMO Report. WMO-No. 1143. https:// library.wmo.int/doc_num.php?explnum_id=7886.